Exit Menu

Development of an in vitro 3D tissue culture model to study the effects of environmental contaminants on the human fetal-placental unit

Endocrine disrupting chemicals (EDCs) are environmental chemicals that interfere with physiological systems, adversely affecting hormone balance (endocrine system) and disrupting the normal function of organs heavily regulated by hormones, such as those of the female reproductive system. They include a variety of classes of chemicals, such as industrial by-products, pesticides and plasticisers. A common chemicals detected in human tissues is xenoestrogen bisphenol A (BPA), a plasticiser. BPA is present at levels that are 5-fold higher in the amniotic fluid than the maternal sera, due to its active transport across the placenta. Also, there is a positive correlation between BPA and miscarriages, and a link with the onset of preeclampsia; a leading cause of maternal and perinatal morbidity and mortality. Exposure to EDCs play a critical role not only in placentation but also in embryonic development and can impact later on in adult life.

Here, we propose the use of inter-connecting chambers 3D placental/umbilical cord/fetal cell models as platform to study how EDCs.  Therefore, during the 3-year PhD studentship we will:
Aim 1: Establish and validate a 3D in vitro model to study fetal-placental function. We will grow commercially available placental, umbilical cord and fetal cells on a 3D matrix of inter-connecting chambers.
Aim 2:  Study the effects of EDCs (e.g. BPA) using tanscriptomics and proteomics. Following treatments, we will investigate changes in the entire genome and proteome of these cells.
Aim 3: Ases the best biomarkers in terms of specificity and specificity for endocrine disruption in the feto-placental model. Using a combination of proteomic and transcriptomic arrays the most predictive biomarkers will be identified for EDCs. 
All techniques are well established, so no caveats are anticipated.

How to apply

If you are interested in applying for the above PhD topic please follow the steps below:

  1. Contact the supervisor by email or phone to discuss your interest and find out if you woold be suitable. Supervisor details can be found on this topic page. The supervisor will guide you in developing the topic-specific research proposal, which will form part of your application.
  2. Click on the 'Apply here' button on this page and you will be taken to the relevant PhD course page, where you can apply using an online application.
  3. Complete the online application indicating your selected supervisor and include the research proposal for the topic you have selected.

Good luck!

This is a self funded topic

Brunel offers a number of funding options to research students that help cover the cost of their tuition fees, contribute to living expenses or both. See more information here: https://www.brunel.ac.uk/research/Research-degrees/Research-degree-funding. The UK Government is also offering Doctoral Student Loans for eligible students, and there is some funding available through the Research Councils. Many of our international students benefit from funding provided by their governments or employers. Brunel alumni enjoy tuition fee discounts of 15%.

Meet the Supervisor(s)

Emmanouil Karteris - Dr Manos Karteris graduated with a BSc (Hons) in Medical Biochemistry from the University of Surrey in 1995. He then was awarded an MSc with Distinction in Medical Genetics with Immunology from Brunel University London in 1996 and completed his PhD in Molecular Endocrinology from the University of Warwick in 2000. He then undertook post-doctoral appointments at the University of Warwick, including a prestigious VIP Research Fellowship from the Wellcome Trust. He was appointed as Lecturer in Endocrinology at the University of Warwick from 2005-2006 and then he transferred to Brunel University London as a Lecturer in Biomedical Sciences in June 2006. Currently he is a Reader in the Division of Biomedical Sciences. He is also the head of the Cancer Biomarkers and Cellular Endocrinology Laboratory (CBCEL). For more information please visit the lab webpage: www.cbcel.org   -

Related Research Group(s)


Organ-on-a-Chip - The group’s main research focus is on women’s health and developing four main organ-on-a-chip (OOC) models: the breast, vagina, ovary, and placenta.