Skip to main content

SPH/FEM coupling for transient analysis

We are seeking a PhD student with appropriate background to work on the development of methods for the coupling of total Lagrangian SPH (Smooth Particle Hydrodynamics) methods to FEM (Finite Element Methods) in the specific case of quasi-static and dynamic elasticity. The SPH/FEM coupling should allow for more accurate modelling of: damage initiation, evolution and localisation; crack initiation, propagation, and branching. Initially, the developments will be done in 2D with intention to be extended and implemented into a 3D non-linear finite element/SPH code. The new developments will be validated and applied to selected industrial problems.

How to apply

If you are interested in applying for the above PhD topic please follow the steps below:

  1. Contact the supervisor by email or phone to discuss your interest and find out if you would be suitable. Supervisor details can be found on this topic page. The supervisor will guide you in developing the topic-specific research proposal, which will form part of your application.
  2. Click on the 'Apply here' button on this page and you will be taken to the relevant PhD course page, where you can apply using an online application.
  3. Complete the online application indicating your selected supervisor and include the research proposal for the topic you have selected.

Good luck!

This is a self funded topic

Brunel offers a number of funding options to research students that help cover the cost of their tuition fees, contribute to living expenses or both. See more information here: https://www.brunel.ac.uk/research/Research-degrees/Research-degree-funding. The UK Government is also offering Doctoral Student Loans for eligible students, and there is some funding available through the Research Councils. Many of our international students benefit from funding provided by their governments or employers. Brunel alumni enjoy tuition fee discounts of 15%.