Skip to main content

A data-driven approach for optimal distribution network operation

The UK’s current power network cannot meet the energy demand of an influx of EVs. The coupling will be aided by the development of vehicle-to-grid charging and Internet of Things platforms, which will enable the smart management of assets to facilitate a low carbon network. However, as these shifts in demand and supply happen, it will become increasingly difficult for already congested areas of the grid to balance the added pressures of widespread EV charging. A solution is to build large-scale energy storage infrastructures to provide energy for the rapid charging demand. The battery cost has plummeted in the past decade due to technological advancement. By providing a buffer to ease the transmission of electricity along congested lines, large-scale battery storage can enable active management of distribution networks to avoid grid overloads and allow smoother transitions to decarbonise both the energy and transport sectors.

This project develops an innovative toolkit to enable active management of distribution networks to maximise the distribution network’s voltage stability and minimise EV charging cost with large-scale battery storage. The purpose is to address the growing demand of fast charging stations for EVs. To account for the uncertainties introduced in the distribution networks with intermittent renewables and charging behaviour, a multi-agent reinforcement learning approach is adopted to identify the optimal operation for the distribution networks.By 2040, it is estimated that there will be 500 million EVs globally and there will be 36 million EVs in the UK. These EVs are radicalising the way citizens transfer, use and interact with energy and will have a great impact on local and national energy networks. There is a pressing need to identify and utilise the relevant energy storage technologies to mitigate wide-scale blackout due to power supply and demand imbalance.

Project duration: 1st February 2021- 30th July 2021

Meet the Principal Investigator(s) for the project

Dr Chun Sing Lai
Dr Chun Sing Lai - Dr Chun Sing Lai is a Lecturer, Module Leader for EE1618 Devices and Circuits, taught at Chongqing University of Posts and Telecommunication (CQUPT) and Course Director for MSc Electric Vehicle Systems. He is an academic member of the Transnational Education (TNE) CQUPT programme for BEng Electronics and Communications Engineering. He is a member of Brunel Interdisciplinary Power Systems (BIPS) Research Centre. His current interests are in power system optimisation, energy system modeling, data analytics, electric vehicle systems, hybrid powertrains optimisation, and energy economics for renewable energy and storage systems. From 2018 to 2020, Dr Lai was an EPSRC Research Fellow with the Faculty of Engineering and Physical Sciences, University of Leeds as the lead researcher for EP/P022049/1: Generation Integrated Energy Storage - A Paradigm Shift. He is a Visiting Research Fellow at the School of Electronic and Electrical Engineering, University of Leeds and Visiting Research Fellow with the Department of Electrical Engineering, School of Automation, Guangdong University of Technology, China. He is Vice-Chair of the IEEE Smart Cities Publications Committee. Since 2022, Dr Lai is Associate Vice President, Systems Science and Engineering of the IEEE Systems, Man, and Cybernetics Society (IEEE/SMCS). He is a Co-Chair of Intelligent Power And Energy Systems Technical Committee of IEEE SMC Society. Since 2020, Dr Lai is Vice-counsellor for Brunel University London IEEE Student Branch. He is a Member of Early Career Researchers Committee of EPSRC Supergen Energy Storage Network+. He organised the workshop on Smart Grid and Smart City, IEEE SMC 2017 in Canada and a workshop on Blockchain for Smart Grid, IEEE SMC 2018 in Japan. He was a Publications Co-Chair for IEEE International Smart Cities Conference ISC2 (2020 and 2021). Dr Lai is a Technical Programme Chair for IEEE ISC2 2022 and Publications Co-Chair for 2022 the 12th International Conference on Power and Energy Systems (ICPES 2022). He was an Invited Speaker at 2023 6th Asia Conference on Energy and Electrical Engineering (ACEEE 2023) and 2023 6th International Conference on Power and Smart Grid. He has successfully secured funding to lead Standards-Related Activities in 2022-23 from IEEE Technical Activities Board Committee on Standards (TAB CoS). He is a recipient of the IET International Travel Award and Meritorious Service Award from the IEEE SMC Society for "meritorious and significant service to IEEE SMC Society technical activities and standards development" in 2022. Dr Lai is an Associate Editor for IEEE Transactions on Systems, Man, and Cybernetics: Systems (IF: 11.471), IEEE Transactions on Consumer Electronics (IF: 4.414); IET Energy Conversion and Economics, and Frontiers in Energy Research (Smart Grids) (IF: 3.858). He is an Editorial Board member for Sensors (Industrial Sensors, IF: 3.847), Topics Board member for Electronics, and Reviewer Board member for Applied Sciences, as well as Guest Editor for several IEEE and MDPI journals. Dr Lai has co-authored "Smart Energy for Transportation and Health in a Smart City", Wiley, 2023. He is a book editor for "Electrification of Smart Cities", Electronics 2022. He is a Member and Contributor to IEEE Task Force on Enabling Paradigms for High-performance Computing in Wide Area Monitoring Protective and Control Systems. He has contributed to four journal papers that appear on Web of Science as Highly Cited Papers with three as the lead author. He is recognised as the top 2% of world active scientists by survey conducted by Stanford University. Dr Lai is a frequent reviewer for research grant applications such as National Fund for Scientific and Technological Development (FONDECYT), Government of Chile.

Related Research Group(s)

power cables

Brunel Interdisciplinary Power Systems - Power systems analysis for transmission and distribution networks, smart grids; congestion monitoring in transmission networks; simulation and analysis of new energy markets; optimisation of the design and operation of electrical networks; condition monitoring of power station and power system plant; energy-efficient designs for underground electric power cables.

Partnering with confidence

Organisations interested in our research can partner with us with confidence backed by an external and independent benchmark: The Knowledge Exchange Framework. Read more.

Project last modified 13/10/2023