Skip to main content

Group Members

Leader(s)

Professor Atanas Ivanov Professor Atanas Ivanov
Email Professor Atanas Ivanov Professor of Advanced Engineering Design
Dr Ivanov world-leading expertise in non-traditional manufacturing spans over a decade of innovating and developing new technologies. In 2007 he was registered by GUINNESS BOOK RECORD for drilling the smallest hole in the world ø22µm 10 aspect ratio. From 2008 Dr Ivanov was the only producer of samples for cryogenic sensors from InSb for the European space programme and NASA. In 2009 he designed of the control of the mirrors for HERCHEL and PLANCK satellites and the sampler (ISOSAMPLER) for NASA for their ‘Medusa’ project for Mars and Jupiter missions. Dr Ivanov registered a world patent for using cutting tools as measuring probes as part of his work fr the Basque government in 2010. After joining Brunel he developed the first in the world micro electrochemical drilling machine for the fuel injection systems for BMW (SONPLAS). In 2013 Dr Ivanov built the first µECM milling machine. In the last 10 years Dr Ivanov acquired 15 grants and an income of over £1m as PI only, and an additional income as a collaborator. In 2018 he received an Innovate UK grant for developing a technology for the identification of airplane fasteners. Dr Ivanov is a world-leading specialist in µECM machining technology. In 2019/20 he developed world-leading µECM technology for sharpening glaucoma needles.

Members

Dr Abhishek Lahiri Dr Abhishek Lahiri
Email Dr Abhishek Lahiri Senior Lecturer in Chemical Engineering
Dr. Lahiri joined Brunel University as lecturer in March 2020. He got his PhD from University of Leeds in 2008 after which he went on to do his Postdoc in USA and Japan. From 2011 he joined Clausthal University of Technology in Prof Frank Endres group and worked extensively on electrodeposition in ionic liquids and understanding the battery electrode/electrolyte interface. His work primarily focusses on electrochemical synthesis of functional materials using ionic liquids for energy storage and electrocatalysis. Besides, he focusses on sustainable extraction process for recovery of metal/metal oxides from electronic wastes and lithium ion batteries. In ionic liquids, the electrode/electrolyte interface is considerably different from aqueous electrolytes and therefore controlling and modifying the interface leads to change in functional properties of the materials. His research focusses and utilises the property of interfacial modulation to develop new functional materials and tries to bridge the gap between fundamental aspects of electrochemistry and applied electrochemistry. Questions such as can we design a suitable interface to develop dendrite-free deposits which are essential for developing high energy density Li/Na metal batteries are targeted. Besides, developing batteries for grid energy storage with sustainable materials are being researched. My research focuses on 1. Developing sustainable battery electrodes for Li, Na, Zn and Al batteries 2. Understanding and engineering the battery electrode/electrolyte interface to improve the device performance 3. Developing porous materials for photo/electrocatalysis and understanding the mechanism using both experiment and modelling 4. Battery recycling technology CL2601:Heat and Mass Transfer (Module leader) CL5604:Process Engineering Fundamentals (Module leader) CL2602: Chemical Engineer's Toolbox CL3603: Separation process II (Module leader) CL5650: Chemical engineering research project (Module leader)
Dr Ruth Mackay Dr Ruth Mackay
Email Dr Ruth Mackay Senior Lecturer
Dr Mackay is a Mechanical Engineer with a particular interest within the biomedical field. She gained her undergraduate degree from the University of Dundee in 2007 in Mechnical Engineering. This was followed by a her PhD Micro-electromechanical-systems in 2011, also at the University of Dundee, funded by a CASE grant from the EPSRC with IDB Technologies. She moved to Brunel in 2011 to work as a Research Fellow on a tanslational MRC grant developing point of care devices. She became a lecturer at Brunel in 2015. Her research focuses on organ-on-a-chip tecnologies for women's health, low cost point of care diagnostic devices and prosthetics. She teaches within the areas of Finite Element Analysis and Medical Device Engineering. Dr Mackay's primary research focus is within the field of Organ-on-a-Chip (OOC). Within the group she researches the development of microfluidic devices, manufacturing methods, cell scaffold facbrication and electronic control of the systems. The OOC group at Brunel University London (www.bruneldoclab.com) incorporates toxicologists, engineers, life scientists and bioinformaticians. The group’s research focuses on developing alternative systems to study women’s health issues, such as cancers, pregnancy outcomes and sexually transmitted infections. We are currently working on systems that replicate female organs (vagina, ovaries, placenta and breast) to better understand initiation, progression diagnosis and treatment of women’s diseases and disorders. Her other research interests include low cost, point of care diagnostics, prosthetics and soft robotics Organ on a Chip Low cost diagnostics Microfluidics Prosthetics Soft Robotics ME3622 Mechanical Engineering Structures ME3626 Vehicle Structures and FEA ME5678 Medical Device Engineering ME5692 Group Project (MEng)