Advanced Engineering Design MSc

  • Overview
  • Course Content
  • Special Features
  • Employability
  • Fees
  • Entry Criteria

About the Course

This programme is aimed at high calibre and ambitious Mechanical Engineering graduates who wish to gain expertise in systematically developing complex, multidisciplinary engineering design. You will learn how to design products requiring embedded intelligence and comprehensive engineering analysis and how to use six CAE software packages.

See what the students have said about this course: graduates, current students and part-time students.

New optional modules available for MSc Programmes

The Advanced Manufacturing and Enterprise Engineering (AMEE) Subject Area is pleased to announce that following a recent comprehensive review of the modules on offer for the various MSc programmes, a more versatile scheme of studies for all its MSc programmes is to be introduced. The new scheme will not only allow students greater flexibility within the programmes but has been designed to enhance the industrial relevance and employment prospects of students graduating from the programmes.

Proposed Scheme of Studies will be available soon.

Aims

The programme is aimed at high calibre and ambitious Mechanical Engineering graduates who wish to gain expertise in systematically developing complex, multidisciplinary engineering design.

You will learn:

  • How to design products requiring embedded intelligence and comprehensive engineering analysis
  • How to use six CAE software packages

Why a programme in Engineering Design?

Engineering Design is the application of engineering principles, the experience of making, and use of mathematical models and analysis. The design and production of complex engineering products often require the use of embedded intelligence and detailed engineering analysis involving mechanical, electronic and control functions. Advanced theoretical knowledge and a wide range of computer driven tools, methods and methodologies are essential for this process.

Thus there is a need for an integrated course where advanced theory, human factors and creativity tools essential to successful product development are taught, training in software, research and/or applications provided and experience in the application of these knowledge and skill components in an integrating real life group project is given. This course has been developed to fulfil this need.

Enquiries

Admissions and Course Enquiries
Web: Admissions Enquiries Information
Tel (before application): +44 (0)1895 265814 (College Marketing Office)
Tel (after application): +44 (0)1895 265265 (Admissions Office)
Contact Admissions or Course Enquiries Online

Course Director: Dr Atanas Ivanov
Email: atanas.ivanov@brunel.ac.uk

Related Courses

Course Content

Continued design of modern complex products demands advanced knowledge in mechanical, electronic, manufacturing and control engineering disciplines and human factors in design, ability to use advanced engineering software packages, integrating application experience and ability to carry on learning.

The Engineering Design MSc and its course curriculum has been developed to produce design engineers who can meet these demands. It contains six taught modules where advanced multi-disciplinary theory is taught. As part of the course, six engineering software packages are also taught. In order to give an integrating application experience in an industrial setup, 'Design Experience', a group project module with an industry, has been included as part of the curriculum. The dissertation is aimed at providing training in carrying out an in-depth engineering task on a self-learning basis. Thus, at the end of the course you will become a confident design engineer equipped with high quality and advanced knowledge and skills to work on design tasks in an advanced computer assisted environment and ability to gather useful knowledge on an engineering topic on your own when it is necessary as part of the task.

Modules

Compulsory modules

  • Sustainable Design and Manufacture: Students will be taught methodologies for assessment sustainability of a product design, and methodologies for assessing the sustainability of manufacturing procedures and operations. The module has a practical orientation, and at the same time offers common analytical tools for assessment to be used in the design and manufacturing environment.

  • Manufacturing Systems and Economics: This module looks at advanced aspects of (a) Manufacturing Processes including description, analysis and classification of basic manufacturing processes; process capabilities, recent advances and developments, assembly systems, automation, robotics and CNC machines, CAD/CAM application, (b) Production Operations including Plant layout, Group Technology,Cellular Manufacturing and Flexible Manufacturing Systems. Lean manufacturing techniques, Kaizen, KANBAN, JIT, 5S, seven wastes,Poke Yoke, Value Chain, supplychain management and outsourcing and design reuse. Inventory control and MRP, and quality control. (c) Design for Manufacture and Process selection: including the relationship between design features and process capabilities, manufacturing system selection to produce a given design and (d) Economics for Manufacture: including Inventory Costing, Economic Order Quantities, Costing machine tool selection and cost of production strategy.

  • Computer Aided Engineering 1: In this module students will be taught (a) how to constitute entities of physical object, points, edges, surfaces and solids which are modelled for CAE, and the skills to implement them using a contemporary CAE software to create a computer model of a part, or assembly [Pro/Engineer, CATIA, Solidworks), (b) theory and some useful applications of computer models in mechanism synthesis and analysis using a contemporary CAE packages [MATLAB, SIMULINK].

  • Computer Aided Engineering 2: In this module the students will be taught (a) advanced theory in Finite Element Analysis (FEA) and Structural Design (b) useful application of the FEA modelling thermal or electrostatic or electromagnetic fields and use of contemporary CAE packages like Pro/Mechanica, ANSYS, ABAQUS.

  • Dissertation: Following the taught part of the programme and reflecting individual interests, the dissertation is an in-depth study of a manufacturing problem or situation, requiring a high standard of investigation and presentation. The analysis of a ‘real’ problem is expected, frequently involving a company or workplace. Close liaison between the University, the student and, where appropriate, the company is essential when selecting a topic which has a suitable academic content and an appropriate scope, relevance and timescale. Some students may wish their dissertations to be considered by the Chartered Engineering Institutions to satisfy requirements for corporate membership. In this case, a further set of criteria will have to be satisfied and you should contact the appropriate institute on the best way to proceed.

Optional modules (2 modules)

  • Microprocessors and Embedded Systems: This module covers the various elements of embedded system design ie the inclusion of microprocessor system into a mechanism in order to control it. The specialist microprocessor commonly used will be investigated in terms of how to program and interface them to the real world, and how to use particular features required for embedded systems. The other half of the module introduces the subject of control systems analysis and design, with the aim of providing sufficient understanding to implement a feedback control system using a microprocessor.

  • Advanced Manufacturing Measurement: The module will provide an understanding and critical awareness to designing and controlling modern automated manufacturing systems, and employs a systems approach in doing so. The module provides an exposure to a variety of industrial and factory automation practices, and also an understanding in selecting appropriate automation and control methods for the equipment or process at hand. The students will be able to understand the criticality and importance of automation and robotics in the modern industrial environment, and will also understand the issues and differences in automation practices between discrete and process industries. Students will be able to apply current technical knowledge in, and operating a modern manufacturing system, as well as critically analyse manufacturing systems and specify select suitable approaches for control, and to evaluate and justify an automated system.

  • Human Factors in Design: In this module the students will (a) develop an understanding of the physical characteristics of humans (b) learn to use the main qualitative and analytical methods of human centred design (c) be led to appreciate the application of human centered design techniques by means of examples chosen from the automotive, electronic and consumer product industries and, (d) acquire skills in multidisciplinary thinking and multidisciplinary design practice.

  • Robotics and Automation: The module aims at providing an understanding and critical awareness to designing and controlling modern automated manufacturing systems, and employs a systems approach in doing so. The module provides an exposure to a variety of industrial and factory automation practices, and also an understanding in selecting appropriate automation and control methods for the equipment or process at hand.

  • Design of Mechatronic: In this module the students will be taught how to (a) integrate mechanical, electronic and control functions (b) critically analyse and use mechatronic design concepts (c) apply multiple discipline expertise in an integrating mechatronic process and (d) use advanced software to simulate power electronic circuits (PSPICE).

Special Features

Professional Accreditation

The Advanced Engineering Design is accredited by the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Special Facilities

Work in a purpose equipped Design Studio with various experiential learning facilities including computers for the exclusive use of the MSc Engineering Design Students.

Accreditation

The Advanced Engineering Design is accredited by the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

Careers

The course provides advanced knowledge, skills and attitudes demanded in job descriptions by top engineering organisations such as Airbus, Rolls-Royce, BAE Systems, VW group and British Petroleum, Original Equipment Manufacturers such as Caterpillar and engineering consultancies such as Anderson Consulting. It provides active experience in the whole design process in an industrial environment from initial concept to final design for manufacture, through its Design Experience module.

Niftylift Ltd, a leading aerial work platform manufacturer, has provided a computer based open learning facility where the students learn Engineering Software packages such as Pro/Engineer, ADAMS, DEPOCAM, ANSYS, ARENA, MATLAB and PSPICE to complement the studies in the classrooms which will create many employment opportunities.

Students have described the course as "The doorway to industry" due to its integrated advanced theory and intense applications.

Graduates are in employment with a variety of engineering companies including construction companies, original equipment manufacturers and oil and gas companies. It is anticipated that graduates will go on to a wide range of careers, including aerospace, transport, government and manufacturing.

At Brunel we provide many opportunities and experiences within your degree programme and beyond – work-based learning, professional support services, volunteering, mentoring, sports, arts, clubs, societies, and much, much more – and we encourage you to make the most of them, so that you can make the most of yourself.

» More about Employability

Fees for 2014/15 entry

UK/EU students: £7,750 full-time; £3,875 part-time

International students: £16,000 full-time; £8,000 part-time

Read about funding opportunities available to postgraduate students

Fees quoted are per annum and are subject to an annual increase.

Entry Requirements

A UK first or second class Honours degree or equivalent internationally recognised qualification in engineering or appropriate science and technology discipline.

Entry criteria is subject to change.

English Language Requirements

  • IELTS: 6 (min 5.5 in all areas) 
  • Pearson: 51 (51 in all subscores)
  • BrunELT: 60% (min 55% in all areas)

Brunel also offers our own BrunELT English Test and accept a range of other language courses. We also have a range of Pre-sessional English language courses, for students who do not meet these requirements, or who wish to improve their English.

Our International Pathways and Language Centre offers a range of foundation and pre-masters courses to provide you with the academic skills required for your chosen course.

Page last updated: Wednesday 29 October 2014