Exit Menu

Structural Integrity (Asset Reliability Management) MSc

Enquire now

Apply full–time

Apply part–time

Subject area: Mechanical Engineering
Mode of study

1-year full-time: teaching delivered at Granta Park, Cambridge.

PG code


Start date


Location of study

TWI headquarters, Granta Park, Cambridge

Structural Integrity (Asset Reliability Management) MSc


Join the next online webinar 12 June, 12pm (BST) with Dr Kevin Hughes, to find out more about this industrial-led course.

The Structural Integrity (Asset Reliability Management) MSc course is delivered at Granta Park, Cambridge, the home of the National Structural Intergrity Research Centre (NSIRC) and TWI. Scholarships have been announced for this course for September 2018 entry - apply now.

NAFEMS Approved module logoaOur module, Numerical Modelling of Solids and Structures is the only one of its kind approved by NAFEMS, the International Association for the Engineering Modelling, Analysis and Simulation Community.

Download our new course brochure for more detailed information on the course.

Postgraduate Loans: From 1 August 2018 , students who live in England will be able to apply for a Postgraduate Loan in academic year 2018/19 of up to £10,609. Find out more

About the course

This course at Brunel stands out from others in the market because NSIRC is the UK’s first industrially-led postgraduate education centre, which is a joint initiative between TWI and Brunel University London as the lead academic partner.

There are no other postgraduate opportunities that provide a dedicated, specialist training programme that combines academic excellence through Brunel University London, with extensive up-to-date industrial experience of TWI’s experts across the many and varied disciplines essential to structural integrity, as applied in the oil and gas, power generation and transportation sectors.

 The National Structural Integrity Research Centre (NSIRC), an education and research collaboration with Brunel University London, is contributing to the course.


This programme is specifically tailored to provide graduates or practising engineers with the necessary skills to pursue a successful engineering career, who are targeted for recruitment by companies and organisations globally. As industry-ready engineers, recent graduates of this MSc are in high demand and have been successful in gaining employment in:

  • Oil and gas industry
  • Engineering consultancies
  • Asset management
  • Research organisations

When structures fail, the results can be catastrophic. Not only in terms of potential loss of life and operational downtime, but also because of the huge costs associated with subsequent inspection and repair. Integrity engineers play a crucial role in preventing these failures. Their decisions influence structural design, determine service life extensions and improve safety for a wide range of sectors, including oil and gas, power generation and transportation.

This unique postgraduate programme provides the necessary training needed to detect the existence, formation and growth of damage and defects, and to assess the influence of loads and stresses arising from manufacture and applied in service. While being able to detect defects is vital, it is knowing what to do with these defects that is at the core of this programme. You can expect to be taught by industrial experts involved in developing codes, standards and working practices.

Being industry-led, this programme provides an opportunity to work on real engineering projects, equipping graduates with applied knowledge of material and structural failure, finite element analysis, non-destructive testing and project management. 



Contact our Enquiries team.
Course Enquiries: +44 (0)1895 265599 (before you submit an application)
Admissions Office: +44 (0)1895 265265 (after you submit an application)

Course content

The Structural Integrity (Asset Reliability Management) MSc is based around eight modules and an industry-led dissertation project. Please be aware modules may be subject to change.

Fracture Mechanics and Fatigue Analysis

This module focuses on the analysis of cracked and uncracked structures. The course aims to familiarise students in material behaviour of fractures and fatigue, and how the knowledge of structural integrity could prevent catastrophic failure which results in severe consequences. The module will focus on the analytical aspects of the main parameters, primary and secondary stresses, local and global collapse, fracture mechanics and fatigue analysis, particularly in terms of the linear elastic fracture mechanics, and elastic-plastic analysis with J-integral. Fracture and fatigue tests will be covered with practical sessions.

Students will gain a better knowledge and understanding of fracture mechanics and fatigue of metals and non-metallic materials, and will have the necessary background knowledge to deal with components and structures containing flaws.

This module will be assessed by a group assignment, and a written examination.

Materials - Metallurgy and Materials

This module will introduce the student to metallurgy and materials science, both in terms of physical and mechanical metallurgy. The module will focus on various metallic and non-metallic engineering materials in terms of their properties, fabrication and degradation mechanisms. Understanding of the influence of joining and surfacing techniques on the properties and degradation of these materials will be covered. Experience of practical methods for materials selection and failure analysis will be given, with reference to relevant international standards where applicable.

This module will be assessed by a group assignment, an individual assignment and a final examination.

NDT Inspection Methodology

This module covers the theoretical principles, advantages and disadvantages of the commonest NDT methods and techniques, to enable students to identify the correct inspection methods to be applied for a specific task (e.g. failure mechanism), and understand the essential variables for ensuring the inspection meets these requirements and provides relevant input into an engineering assessment. Students will be introduced to the fundamental processes involved in the generation of an inspection strategy in accordance with the requirements of international codes.

This module will be assessed through the preparation of an inspection procedure and strategy plan in conjunction with an examination.

Codes and Standards in Structural Integrity

Based on BS 7910, this module will cover the principles of failure assessment of engineering components and structures with defects. The module will focus on the Failure Assessment Diagram (FAD) approach and fracture assessment procedure, including all key features and calculation steps, such as the three levels of analysis and their corresponding needs, requirements and procedures.

Fatigue assessment procedures based on BS 7910 will then be covered with fracture mechanics based calculations of fatigue crack growth. Competency statements and BS 7910 annexes, non-planar flaws and other flaw assessment procedures will also be covered.

Other commonly referred codes in engineering practices, such as R6, R5, API 579-1I, ASME FFS-1 and DNV-OS-F101 will also be discussed. New code development will also be introduced such as the EU fitness-for-services codes.

The module will be assessed by a group and individual assignment.

Stress Analysis and Plant Inspection

This module will enable you to have a thorough understanding in stress analysis with emphasis on determination of materials properties, the relevant published material data and assessment of flaw tolerance as well as yielding, constitutive laws, contact/frictional failures and impact loading which underpin the analysis for material and structural failure.

The module provides an overview of different plants and processes within several industry sectors (i.e. oil and gas upstream and downstream, power generation), leading to a thorough understanding on how different operations work, what are the elements of each process and what different assets or plant consist of. This is crucial learning for those who do not have industrial experience. Once you are familiar with typical plant and process, it is important to know why these assets need to be inspected and how they should be inspected, allowing these to refer to the stress analysis covered earlier. Major threats are introduced together with the inspection strategy to mitigate them. At the end, the concept of Risk and Risk Based Inspection (RBI) is introduced with practical exercises.

Numerical Modelling of Solids and Structures

This module covers the theoretical and practical principles underlying Finite Element Analysis (FEA) and Boundary Element Method (BEM) to enable students to understand advanced specialist topics in numerical analysis of stress and structures.

Students will learn the numerical tools for stress and strain simulations, particularly for stress concentration and cracks in solids, as well as simulations for non-destructive testing. The module will provide experience in the use of general purposed computer codes in engineering applications.

This module will be assessed by an assignment report and a technical presentation.

This module will be assessed by a group assignment and an examination.

NAFEMS Approved module logoaThis module has been approved by NAFEMS, the International Association for the Engineering Modelling, Analysis and Simulation Community.


Reliability Engineering

This module aims to provide a working knowledge at professional level of the advanced techniques in reliability engineering and an ability to apply them to structural analysis, the theory on probability of flaws detection and on dimensional uncertainty of the flaws detected.

Topics covered include: Decision analysis; Event-tree analysis; Fault-tree analysis; Reliability of items; Weibull analysis; Reliability of systems; Failure mode and criticality analysis; Markov analysis; Simulation techniques; Statistical analysis of reliability data – Detection uncertainty and Dimensioning uncertainty of flaws and introduction on FORM and SORM, paving the way for more advanced study in module ME55KK.

This module will be assessed by two technical reports and an examination.

Structural Health Monitoring

This module will introduce the concepts and approaches that are currently used in structural health monitoring identification and monitoring techniques. The emphasis will be on modern approaches using input-output or output only methods applied on complex industrial applications.

The module will focus on the numerical and experimental aspects of damage detection techniques. Both numerical simulations and practical experimental analysis sessions will be carried out using different SHM methodologies.

This module will be assessed by a group assignment and numerical benchmarks and an examination.


Students will conduct research in the area of advanced NDT, Structural life assessment, Asset integrity management and Reliability engineering. At the end of the research, students must produce a dissertation of not more than 30,000 words. It is anticipated that a large number of students will carry out their dissertation in industry.


Read more about the structure of postgraduate degrees at Brunel and what you will learn on the course.

Typical dissertations

Example dissertation topics

  • 4D computed tomography study of additive manufactured metal lattice structures
  • Corrosion resistance of anodised aluminium in marine energy monitoring systems
  • Destructive testing of open rotor propeller blades
  • Implementing ultrasonic inspection of underwater structures from a submersed platform
  • Correlating cathodic protection levels to external corrosion in underground pipes
  • Generation and ingress of hydrogen in cathodically polarised high-strength steels
  • Multiscale modelling of dynamic behaviour in composite materials
  • Ultrasonic inspection of mooring chains using array ultrasonic techniques
  • Influence of side grooving on fracture toughness specimens
  • Crack growing behaviour under residual stress
  • Effect of post-weld heat treatment on corrosion performance of FSW 7050-T7451 aluminium alloys


The high level of industrial involvement within the programme is unique in the UK, allowing students to gain academic knowledge and industrial experience.

Early contact with industry will increase your employability, as the networking opportunities and the professional environment students are exposed to ensure graduates are industry-ready, which is a direct result of the teaching team placing special emphasis on providing a solid theoretical and applied training.

Many applicants have considerable experience and are already practising NDE / NDT engineers looking to further their careers, which generates a rich learning and networking environment.


Our graduates have gone on to work for industrial companies, research and consultancy organisations including NSIRC, TWI Ltd, Mott McDonald, PTT Global Chemical Company and Network Rail, taking up positions not only in the UK, but across the world.

As industry-ready engineers, recent graduates of this MSc are in high demand and have been successful in gaining employment in the following areas:

  • Oil and gas industry
  • Engineering consultancies
  • Asset management
  • Research organisations

If your interests lie in research, former graduates have gone on to pursue PhDs either at Brunel University London, or at other academic institutions in the UK and Europe.

Work placements

All dissertation projects will be linked to an industrial research scheme thus providing opportunities for placements to various extents appropriate to the project requirement.

At Brunel we provide many opportunities and experiences within your degree programme and beyond – work-based learning, professional support services, volunteering, mentoring, sports, arts, clubs, societies, and much, much more – and we encourage you to make the most of them, so that you can make the most of yourself.

» More about Employability

Entry criteria 2019/20


  • A 2:2 (or above) UK Honours degree,or equivalent internationally recognised qualification, in an engineering, science or technology subject. A non–related subject with good grades in core modules in Stress Analysis or Strength in Materials; Electronics; Material Processing and Manufacturing/Production Technology, may be considered.


Entry to this programme requires all students who are not nationals of the European Economic Area (EEA) and have temporary immigration permission to remain in the UK to obtain an ATAS certificate.  If you are made an offer to join this course and you are not an EEA national, you will be required to obtain an ATAS certificate as a condition of your offer.

Entry criteria are subject to review and change each academic year.

International and EU entry requirements

If your country or institution is not listed or if you are not sure whether your institution is eligible, please contact Admissions

This information is for guidance only by Brunel University London and by meeting the academic requirements does not guarantee entry for our courses as applications are assessed on case-by-case basis.

English language requirements

  • IELTS: 6 (min 5.5 in all areas)
  • Pearson: 51 (51 in all subscores)
  • BrunELT: 60% (min 55% in all areas)

You can find out more about the qualifications we accept on our English Language Requirements page.

If you require a Tier 4 visa to study in the UK, you must prove knowledge of the English language so that we can issue you a Certificate of Acceptance for Study (CAS). To do this, you will need an IELTS for UKVI or Trinity SELT test pass gained from a test centre approved by UK Visas and Immigration (UKVI) and on the Secure English Language Testing (SELT) list. This must have been taken and passed within two years from the date the CAS is made.

Should you wish to take a pre-sessional English course to improve your English prior to starting your degree course, you must sit the test at an approved SELT provider for the same reason.

We offer our own BrunELT English Test and have pre-sessional English language courses for students who do not meet requirements or who wish to improve their English. You can find out more information on English courses and test options at the Brunel Language Centre.

Teaching and learning

The course runs from September to September, with the key activities in the period up to the end of April being taught lecture modules and seminars from leading experts in the UK. From May until the end of the programme, students work full-time on their industrially supported dissertation project.

The programme employs a wide range of teaching methods designed to create a demanding and varied learning environment including a structured lecture programme, self-study online videos, case studies, “hands on” computing and testing laboratory sessions and guest speakers.

Assessment and feedback

Each module is assessed through a range of assessment types (including group work), to ensure students have a comprehensive understanding and can readily apply the taught material to real engineering problems.

Special features

The MSc Structural Integrity (Asset Reliability Management) MSc at Brunel University London has significant industrial involvement with contribution from the NSIRC. The MSc course will combine academic excellence with the extensive up-to-date industrial experience of TWI's experts across the many and varied disciplines that are essential to structural integrity.

Student diversity

Our students come from a variety of personal and professional backgrounds. Many have specific careers in mind, or are already practising integrity engineers working in the oil and gas or power generation sectors. This mix of experience creates an extremely valuable learning environment and excellent opportunities for networking.


Located in a purpose-built facility adjacent to the headquarters of TWI, this specialist off-campus programme is solely delivered at the Granta Park science campus just outside Cambridge. The setting allows students to work alongside leading academics and industrial experts who are at the forefront of structural integrity research.

Getting to Granta Park is convenient and straightforward, with several shuttle buses travelling directly from the city centre every day. Students can enjoy life in Cambridge and benefit from the many sporting, cultural and social events this compact cosmopolitan city provides. Cambridge is also conveniently close to London, just a 45-minute journey by train, and enjoys easy access to the major London airports and road links to the rest of the country. 

Granta Park location map

Excellent facilities

The bespoke teaching, research and experimental facilities are outstanding; with state-of-the-art equipment available to support a variety of research topics specified by our industrial partners and includes:

  • Industry standard commercial software including Simulia ABAQUS, MATLAB and industry standard software developed by TWI, including CrackWISE (fracture and fatigue assessment procedures (BS 7910) for engineering critical assessment and IntegriWISE (Fitness-For-Service (FFS)) assessment software for evaluating the integrity of ageing pipework, pipelines, storage tanks, boilers, pressure vessels and high temperature equipment.
  • Access to joint facilities across Brunel University London and TWI, which allows component and full scale testing, which includes mechanical and fatigue testing under different environmental conditions, NDT inspection, together with access to 4D tomography and microscopy facilities.
  • Access to onsite, dedicated high performance computing facility, which permits large scale computational research projects to be performed.
  • Combined access to Brunel and TWI library resources, which includes the latest publications, staff journal papers and the latest design codes and standards developed by TWI.


With a vast student mix in Cambridge, there is accommodation available minutes from TWI.

Women in Brunel Engineering and Computing Programme

Brunel’s Women in Brunel Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.





Accreditation by external professional bodies is further testament to our teaching standards and course content. Graduates are able to use this degree to satisfy part of the further learning requirements for Chartered Engineer (CEng) status with the Institution of Mechanical Engineers and the Institute of Materials, Minerals and Mining. 

Fees and funding

Fees for 2019/20 entry

UK/EU students: £9,100 full-time

International students: £18,720 full-time

Some courses incur additional course related costs.

Read about other funding opportunities available to postgraduate students.

UK/EU students can opt to pay in six equal monthly instalments: the first instalment is payable on enrolment and the remaining five by Direct Debit or credit/debit card.

Overseas students can opt to pay in two instalments: 60% on enrolment, and 40% in January for students who commence their course in September (or the remaining 40% in March for selected courses that start in January).