Exit Menu

Advanced Mechanical Engineering MSc

Enquire now Apply Full-time Subject area: Mechanical Engineering
Mode of study

1-year full-time

PG code


Start date


Location of study

Brunel University London campus

Advanced Mechanical Engineering MSc


Postgraduate Loans: From 1 August 2018 , students who live in England will be able to apply for a Postgraduate Loan in academic year 2018/19 of up to £10,609. Find out more

About the course

This course aims to produce graduates with qualities and transferable skills for demanding employment in the engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Students may elect to follow one of two streams: Thermofluids or Solid Body Mechanics.

Engineering courses within the Department are underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy and the environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK.

Read about Women in Engineering Scholarships.


Mechanical engineers apply their scientific knowledge to solve problems and design machines that help us enjoy a better lifestyle. They have an enviable choice of industries open to them and this advanced course helps you develop the versatility to deal with complex challenges faced by senior engineers.

On this course you will:

  • Develop the versatility and depth to deal with new and unusual challenges across a range of engineering areas
  • Develop imagination and creativity to enable you to follow a successful engineering career with national and international companies and organisations
  • Continue your professional development to Chartered Engineer status with confidence and acquire new skills at the highest level.

Brunel offer a number of mechanical engineering MSc courses, all accredited by professional institutes as appropriate additional academic study (further learning) for thos seeking to become qualified to register as Chartered Engineers (CEng).

Our collaborative research with numerous outside organisations includes major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Accrediting professional institutes vary by course and include The Institute of Mechanical Engineers (IMechE),The Energy Institute (EI) and The Chartered Institute of Building Services Engineers (CIBSE).


Contact our Enquiries team.
Course Enquiries: +44 (0)1895 265599 (before you submit an application)
Admissions Office: +44 (0)1895 265265 (after you submit an application)

Course content

During the first two terms (September - March) you will take eight modules, out of which:

  • Four are the same for both streams (compulsory modules - 15 credits each)
  • The other four (15 credits each) are different for the two streams.

In May the final examinations for the taught modules will take place and in their third term (June - September) students will complete the final dissertation.

You have the option to choose one of two specialisations, or ‘streams,’ for your dissertation:

  • Thermofluids, or
  • Solid Body Mechanics.

The structure of the course is summarised in the scheme below:

Programme AMEE

Compulsory Modules

Strategic Management, Innovation and Enterprise
Prepares graduate engineers to perform the managerial and business functions expected of staff in first level management positions in engineering organisations. Main topics include: financial ownership issues; human resources management; organisation of a business; marketing concept; ethical business; marketing communications.

Research Methods and Sustainable Engineering

Instil principles of good research practice and enable students to acquire skills to conduct scientifically-robust research with due consideration of engineering quality issues and environmental and health and safety risks. Students will develop a multi-disciplinary understanding of sustainable development and develop a portfolio of environmental impact appraisal tools to apply as future practicing engineers.

Main topics include: practical research issues; information retrieval; risk management; scientific communication, research dissemination; sustainable engineering, including but not limited to sustainable development concepts and policy drivers, Life Cycle Assessment (LCA), environmental impact appraisal tools, with the help of case studies.

Advanced Modelling and Design
Provides students with the ability to employ advanced numerical models for the analysis of complex engineering problems. Main topics include: finite element analysis: two-dimensional elements: triangular, quadrilateral and isoparametric; applications to steady and transient heat transfer; applications to two-dimensional stress analysis; optimisation: types of optimisation problems; objective function; constrained and unconstrained optimisation; multivariate search methods, penalty function, Lagrange multipliers; applications to linkage synthesis; manufacture: computer applications in manufacturing practice, optimisation in design for manufacture, management procedures and quality requirements, application to company practice; design: use and application of Computer Aided Engineering Software in engineering manufacture; the integration of computer aided engineering and manufacturing methods in company practice.

Computer Aided Engineering 1
Shows how the entities points, edges, surfaces and solids are modelled for CAE and how to use their implementation on contemporary CAE software to create the computer model of a part or assembly. Covers some useful applications of computer models such as mechanism synthesis and analysis, NC manufacture and Rapid Prototyping. Provides the skill on the use of a contemporary CAE package for Mechanism Analysis, NC code generation and Rapid Prototyping. Main topics include:

  • Representation and manipulation of the entities points, lines and curves, surfaces and solids (components and assemblies) for use in CAD/CAM applications, with a hands on training in a contemporary CAE system.
  • Analysing the motion aspects (position, velocity and acceleration) and force aspects of connected links or chains used in products (Dynamics).
  • The use of a CAE package for analysing mechanisms.
  • Basics of NC manufacturing and the use of a contemporary CAE package for generating NC codes.
  • Principles of Rapid Prototyping (RP) and the use of a RP system and a contemporary CAD software

Dissertation (Individual project)

Optional Modules

Choose one of the two themes below:

Theme 1 – Thermofluids

  • Advanced Thermofluids: Includes advanced experimental and modelling research tools in thermofluids. Main topics include: methods and instruments in fluid flow measurements: laser doppler anemometry (LDA), particle image velocimetry (PIV), hot-wire anemometry (HWA); Fluid flow and heat transfer simulations by Reynolds-averaged Navier-Stokes (RANS) modelling, large eddy simulation (LES) and direct numerical simulation (DNS).
  • Advanced Heat and Mass Transfer*: Presents theory and practical concepts of single and two-phase heat transfer and applies this to heat and mass transfer equipment. Main topics include: concepts of heat transfer; boiling; condensation; heat exchangers; mass transfer concepts and equipment.
  • Energy Conversion Technologies: Provides familiarisation with the principles and practice of modern energy conversion technologies. Main topics include: principal fuels for energy conversion; production of thermal energy; nuclear reactors; conversion of thermal to mechanical energy; environmental impacts of power plant operation; cooling and heating equipment.
  • Renewable Energy Technologies: Introduces students to the principles of the main renewable resources and provides them with an understanding of renewable energy technologies. Main topics include: The role of Renewables: Economics; Renewable Energy Resource Assessment; National and European Policies; Barriers to implementation of Renewables; Case studies. Solar Thermal: Availability of solar radiation; Types of solar water heating systems; Solar water heating system design, sizing and performance; Solar Electricity: Introduction to Photovoltaics; Materials and Components; Photovoltaic system design and sizing. Wind Power Generation: Availability of Wind; Turbine types; Electricity generation; Planning issues; Turbine sizing and economics. Hydro Electricity: Types of hydro-electric installations; Power generation from waves and tides; Turbines. Environmental considerations. Biofuels: Sources of fuel. Energy extraction techniques; Case-studies. Building Integrated Renewables: Case studies.

Theme 2 – Solid Body Mechanics

  • Advanced Solid Body Mechanics: Covers specialist advance research topics in solid body mechanics and introduces further techniques and analytical topics in experimental stress analysis. Main topics of study include: applications of contact mechanics; time dependent fracture mechanics; engineering design and analysis of silos; biomechanics; biomaterials; experimental stress analysis; strain gauges, photoelasticity, brittle coatings; stress functions in Cartesian and polar coordinates; plasticity in structural elements; analysis of plates in bending.
  • Dynamics and Modal Analysis*: Covers specialist advance research topics in dynamics and modal analysis based on our recent and current research work. Main topics include: matrix treatment of mechanisms both open and closed loop; optimisation and synthesis related to mechanism design; inverse dynamics applied to human body motion.
  • Structural Design and FEA: Gives students advanced theoretical knowledge in Finite Element Analysis, Structural Design and Design of Components. Main topics include: structural design: statically determinate and statically indeterminate structures; energy methods: strain energy, external work, Castigliano's theorems; the principles of virtual work, forces and displacements; unit load method; plasticity and instability of columns; beams and plates; optimum structural design, limit analysis, dynamic programming; FEA: fundamental concepts, theory of elements and applications of finite element method on stress analysis and modal analysis of real world problems; introduction to the FEA software; problem formulation and guidance on the solution methodology using the software; application on stress and frequency analyses.
  • Human Factors in Design: Main topics include: introduction to human factors in design, anthropometry, biomechanics, metabolism, subjective evaluation, whole-body vibration, hand-arm vibration; designing to fit body posture; designing for movement and design of controls and displays.

* If the number of students that choose this stream is low this module may be replaced with an alternative related module.

Read more about the structure of postgraduate degrees at Brunel and what you will learn on the course.

Entry criteria 2019/20

  • A 2:2 (or above) UK Honours degree,or equivalent internationally recognised qualification, in an engineering, or technology subject. Other subjects in a related area , including but not limited to Physics, and Mathematics ,will be considered and assessed on an individual basis.


Entry to this programme requires all students who are not nationals of the European Economic Area (EEA) and have temporary immigration permission to remain in the UK to obtain an ATAS certificate.  If you are made an offer to join this course and you are not an EEA national, you will be required to obtain an ATAS certificate as a condition of your offer.


Entry criteria are subject to review and change each academic year.

International and EU entry requirements

If your country or institution is not listed or if you are not sure whether your institution is eligible, please contact Admissions

This information is for guidance only by Brunel University London and by meeting the academic requirements does not guarantee entry for our courses as applications are assessed on case-by-case basis.

English language requirements

  • IELTS: 6 (min 5.5 in all areas)
  • Pearson: 51 (51 in all subscores)
  • BrunELT: 60% (min 55% in all areas)

You can find out more about the qualifications we accept on our English Language Requirements page.

If you require a Tier 4 visa to study in the UK, you must prove knowledge of the English language so that we can issue you a Certificate of Acceptance for Study (CAS). To do this, you will need an IELTS for UKVI or Trinity SELT test pass gained from a test centre approved by UK Visas and Immigration (UKVI) and on the Secure English Language Testing (SELT) list. This must have been taken and passed within two years from the date the CAS is made.

Should you wish to take a pre-sessional English course to improve your English prior to starting your degree course, you must sit the test at an approved SELT provider for the same reason.

We offer our own BrunELT English Test and have pre-sessional English language courses for students who do not meet requirements or who wish to improve their English. You can find out more information on English courses and test options at the Brunel Language Centre.

Special features

Excellent facilities

  • We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students
  • The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.


Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.


Advanced Mechanical Engineering is accredited by the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.

At Brunel we provide many opportunities and experiences within your degree programme and beyond – work-based learning, professional support services, volunteering, mentoring, sports, arts, clubs, societies, and much, much more – and we encourage you to make the most of them, so that you can make the most of yourself.

Facts and figures

About Mechanical Engineering at Brunel

Mechanical Engineering offers a number of MSc courses all accredited by professional institutes as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Accrediting professional institutes vary by course and include the Institute of Mechanical Engineers (IMechE), Energy Institute (EI) and Chartered Institute of Building Services Engineers (CIBSE).

Teaching in the courses is underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy & environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK.

Fees and funding

Fees for 2019/20 entry

UK/EU students: £9,100 full-time

International students: £18,720 full-time

Some courses incur additional course related costs. You can also check our on-campus accommodation costs for more information on living expenses.


Read about funding opportunities available to postgraduate students

UK/EU students can opt to pay in six equal monthly instalments: the first instalment is payable on enrolment and the remaining five by Direct Debit or credit/debit card.

Overseas students can opt to pay in two instalments: 60% on enrolment, and 40% in January for students who commence their course in September (or the remaining 40% in March for selected courses that start in January).