Skip to main content

Low-carbon cementitious composites from brick waste powder

The objective of this PhD is to develop high performing low-carbon engineering products that utilise brick waste from the demolition of buildings in two forms: 1) brick powder to be used as binder in geopolymer composites and 2) brick aggregates to replace natural sand.

This PhD covers the areas of material science/engineering and sustainable development of engineering products. There are industrial partners involved in this research which will help with the supply of the brick waste and other partners who will contribute to product manufacturing at large scale.

How to apply

If you are interested in applying for the above PhD topic please follow the steps below:

  1. Contact the supervisor by email or phone to discuss your interest and find out if you woold be suitable. Supervisor details can be found on this topic page. The supervisor will guide you in developing the topic-specific research proposal, which will form part of your application.
  2. Click on the 'Apply here' button on this page and you will be taken to the relevant PhD course page, where you can apply using an online application.
  3. Complete the online application indicating your selected supervisor and include the research proposal for the topic you have selected.

Good luck!

This is a self funded topic

Brunel offers a number of funding options to research students that help cover the cost of their tuition fees, contribute to living expenses or both. See more information here: https://www.brunel.ac.uk/research/Research-degrees/Research-degree-funding. The UK Government is also offering Doctoral Student Loans for eligible students, and there is some funding available through the Research Councils. Many of our international students benefit from funding provided by their governments or employers. Brunel alumni enjoy tuition fee discounts of 15%.

Meet the Supervisor(s)


Seyed Ghaffar - Dr Seyed Ghaffar is an Associate Professor in Civil Engineering. He is a Chartered Civil Engineer (CEng, MICE), a Member of the Institute of Concrete Technology (MICT) and a Fellow of the Higher Education Academy (FHEA). He is the leader of Additive Manufacturing Technology in Construction Research Group (AMTC). The focus of AMTC is on valorising construction and demolition waste using materials science and 3D printing to achieve the circular economy goals of sustainable construction. Dr Ghaffar, as the Principal Investigator, has been successful in securing a €220K project funded by the H2020 EU Commission on ''Digital fabrication and integration of Material reuse for environmentally friendly cementitious composite building blocks (DigiMat)' 2021-2023. Dr Ghaffar is the Principal Investigator of a £300K project funded by the British Council (Institutional Links) on 'Direct Writing of Cementitious Inks to Scaffolds with Complex Microarchitectures (DiWoCIS)' 2020-2022. He is also the Principal Investigator of a £300K project funding from the Engineering and Physical Sciences Research Council (EPSRC) on 'High-Performance Compressed Straw Board (HP-CSB): A New Generation of Building Materials' 2018-2022. Dr Ghaffar's research covers a number of construction materials, with a focus on the development of low-carbon technologies suitable for new and retrofitting applications by combining materials sciences and innovative technologies. Dr Ghaffar is the Executive Editor of the Journal of Results in Engineering (Elsevier)   He recently edited a book titled "Innovation in construction - A Practical Guide to Transforming the Construction Industry". He is a Member of the EPSRC Peer Review College and has been appointed as an expert evaluator for the Dutch Research Council (NWO), the Cyprus Research and Innovation Foundation (RIF), and the Science Foundation Ireland (SFI). Dr Ghaffar has also acted as an expert evaluator on Horizon Europe HORIZON-CL4-2021-TWIN-TRANSITION-01-12: Breakthrough technologies supporting technological sovereignty in construction (RIA) (November 2021) and HORIZON-CL4-2022-RESILIENCE-01-16: Building and renovating by exploiting advanced materials for energy and resources efficient management (IA) (April 2022).  During his PhD (2012-2016), Dr Ghaffar was simultaneously working as a research associate on several European research projects, i.e. Grow2Build, VIP4ALL, REWOBIOREF and GELCLAD. Natural fibre composite production, formulation and characterisation are part of Dr Ghaffar's research expertise. In 2015, he was appointed Manager of Grow2Build European Centre of Excellence (Grow2Build), which serves as a permanent focal point for local manufacturers, industries and research centres interested in bio-based building products, providing technical support and innovation for the utilisation of bio-based products in the construction industry. Moreover, construction waste management and valorisation (WasteValue) is another of Dr Ghaffar's research interests. This research aims to study the feasibility of the circular economy (cradle to cradle) management of waste and the environmental sustainability of the systems in construction. WasteValue evaluates and analyses current technologies and strategies concerning construction and demolition waste management in the UK.

Related Research Group(s)

Resilient Structures and Construction Materials

Resilient Structures and Construction Materials - RIMS research group brings together material scientists and structural engineers to deliver resilient infrastructure (buildings, bridges etc.) made of sustainable, advanced materials to perform under harsh natural environment and human-induced hazards.