Skip to main content

Analytical and numerical modeling of innovative strengthening materials (Fiber Reinforced Polymer and Textile Reinforced Mortar) applied to brittle supports

Fiber Reinforced Polymer (FRP) composites and Textile Reinforced Mortar (TRM) materials represent an effective retrofitting strategy for the rehabilitation of masonry and concrete structures. Typically, debonding of an FRP strip from the substrate is a brittle phenomenon involving the support, with the removal of a thin layer of bricks and mortar, and roughly ruled by an initial linear elastic behaviour followed by marked softening, due to the detachment of the strip from the substrate. Several recent and less recent studies, mainly based on experimentation, sophisticated numerical modelling and theoretical approaches, just focus on this topic. The re-elaboration of the experiences collected on this topic allowed to conceive dedicated technical recommendations, as in Italy with the CNR DT 200 - technical code on FRP reinforcement applied to concrete and masonry.

The debate on the application of FRP composites in general and C-FRP in particular for the rehabilitation and seismic upgrading of historical masonry structures or existing buildings is however still open, some authors raising doubts on the long-term efficacy and cost of the intervention when compared with traditional techniques. The major drawback seems however related to the reversibility issue, which is nowadays considered a priority for any seismic upgrading with innovative materials. In order to be consistent with such conservation requirements, part of the scientific efforts have been recently channeled to alternative – appearing more reversible – innovative strengthening systems, such as Textile Reinforced Mortars TRMs.

In addition to open issues related to the reversibility, durability and vapor permeability of FRP strips, from a strictly structural point of view, the application of FRP on masonry walls and arches is certainly very interesting.

The project focuses on the development of advanced analytical and numerical models of innovative reinforcement materials, such as Fiber Reinforced Polymers (FRP) and Textile Reinforced Mortars (TRM), to improve the adhesion of strengthening composites when applied to masonry.

The project offers a unique opportunity to carry out a high-quality research project. The project will be coupled with experimental laboratory tests to enable the calibration and development of advanced modeling approaches.


  • State-of-the-art review and future research directions for FRP-to-masonry bond research: Test methods and techniques for extraction of bond-slip behaviour, J. Vaculik, P. Visintin, N.G. Burton, M.C. Griffith, R. Seracino, Construction and Building Materials, Volume 183, 2018
  • State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM), L. A. S. Kouris, T. C. Triantafillou, Construction and Building Materials, Volume 188, 2018.
  • Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults, E. Bertolesi, B.Torres, J. M. Adam, P. A. Calderón, J. J. Moragues, Engineering Structures, Volume 220, 2020.

How to apply

If you are interested in applying for the above PhD topic please follow the steps below:

  1. Contact the supervisor by email or phone to discuss your interest and find out if you woold be suitable. Supervisor details can be found on this topic page. The supervisor will guide you in developing the topic-specific research proposal, which will form part of your application.
  2. Click on the 'Apply here' button on this page and you will be taken to the relevant PhD course page, where you can apply using an online application.
  3. Complete the online application indicating your selected supervisor and include the research proposal for the topic you have selected.

Good luck!

This is a self funded topic

Brunel offers a number of funding options to research students that help cover the cost of their tuition fees, contribute to living expenses or both. See more information here: The UK Government is also offering Doctoral Student Loans for eligible students, and there is some funding available through the Research Councils. Many of our international students benefit from funding provided by their governments or employers. Brunel alumni enjoy tuition fee discounts of 15%.

Meet the Supervisor(s)

Elisa Bertolesi - Elisa Bertolesi is Lecturer in Structural Engineering at the Department of Civil and Environmental Engineering at Brunel University London (UK). Dr Bertolesi obtained her PhD (with Honours) in Architecture, Built Environment & Construction Engineering at the Polytechnic University of Milan (Italy). The PhD Thesis obtained international recognition when it was awarded the Postgraduate Project Prize by the prestigious International Masonry Society (London, UK). Dr. Bertolesi participated in seven projects that obtained funding in open competition from the European Commission, BBVA Foundation and the Spanish State Research Agency. Her work in these projects included structural monitoring by means of optical sensors and full-scale experimental testing and advanced numerical modelling of masonry and steel structures and structures subjected to extreme events. Since 2018, Dr. Bertolesi has been collaborating with the spin-off company CALSENS ( and the Building Resilient Group ( at the Polytechnic University of Valencia (Spain). Dr. Bertolesi is a Fellow of the Higher Education Academy, UK (FHEA) and member of the Institution of Civil Engineers (UK), CEng, MICE. Dr. Bertolesi is a full College member of the EPSRC. Her academic profile is characterised by a high degree of international activity. To date Dr Bertolesi has published more than 35 papers in high-impact journals (h-index 19 - Scopus: In addition, Dr Bertolesi is a peer reviewer for 17 high impact factor journals and collaborates with the editorial board of the Journal of Composites for Construction (ASCE), Scientific Reports (Springer Nature) and Early Career Board Member of Building and Environment (Elsevier) . The most important recognition of her scientific achievements was her appointment as Managing Editor of the prestigious first-quartile JCR-indexed Journal Construction and Building Materials. Dr Bertolesi participated as Guest Editor for the collection "Numerical Modelling Trends for Historical Masonry Structures", published by Frontiers in Built Environment (Computational Methods in Structural Engineering).