Research profile
The electronic and electrical research draws on the disciplines of electrical power engineering, bio-nanotechnology, wireless technologies for blind navigation, biometrics, use of ultrasonic and electromagnetic acoustic guided wave, fundamentals of charge particle dynamics, measurement systems for pharmaceuticals, medical electronics, pattern recognition, image processing and evolutionary hardware, to improve the control and operations of industrial processes and to enrich the quality of life and services for the 21st century needs. We investigate the efficient conversion of thermal to electrical energy, Direct Current power networks in commercial buildings and homes, and innovations to reduce electrical energy demand. Our work is applied to many areas such as high energy particle physics, space science, energy, medical imaging, and remote instrumentation and control just to name a few.
Find out about the exciting research we do in this area. Browse profiles of our experts, discover the research groups and their inspirational research activities you too could be part of. We’ve also made available extensive reading materials published by our academics and PhD students.
Browse the work of subject-relevant research groups
Find a supervisor
Our researchers create knowledge and advance understanding, and equip versatile doctoral researchers with the confidence to apply what they have learnt for the benefit of society. Find out more about working with the Supervisory Team.
You are welcome to approach your potential supervisor directly to discuss your research interests. Search for expert supervisors for your chosen field of research.
PhD topics
While we welcome applications from students with a clear direction for their research, we are providing you with some ideas for your chosen field of research:
- AI (Artificial Intelligence) enabled autonomous robots for non-disruptive inspection of utility and sewage systems, supervised by Md Nazmul Huda
- AI system for historical handwritten text recognition (HTR), supervised by Md Nazmul Huda
- Ambient Vibration-Based Calibration of Finite Element Models of Bridges, supervised by Michael Rustell
- Applications for education and/or healthcare: Exploring the potential of ‘human-like’ computing, supervised by Arthur Money
- Artificially intelligent conversational agents: exploring their value in education and/or healthcare, supervised by Arthur Money
- Automatic computational fluid-dynamics, supervised by James Tyacke
- Autonomous Drone Surveys and Convolutional Neural Networks for Bridge Maintenance: A Predictive Approach Using Finite Element Analysis, supervised by Michael Rustell
- Autonomous robots for non-disruptive inspection of utility and sewage systems, supervised by Md Nazmul Huda
- Bridging the Gap: Integrating Neural Radiance Fields and Micro-drones for Enhanced 3D Volumetric Finite Element Analysis, supervised by Michael Rustell
- CFD modelling of plasma flow control, supervised by James Tyacke
- Deep learning-based autonomous diagnosis of gastrointestinal tract cancers, supervised by Md Nazmul Huda
- Design and implementation of Explainable Trustworthy Artificial Intelligent System, supervised by Tatiana Kalganova
- Developing a device for marine life and water quality monitoring, supervised by Gera Troisi
- Development of a miniature capsule robot for capsule endoscopy, supervised by Md Nazmul Huda
- Development of an Optical Shape Sensing Method Using Optoelectronic Sensors for Soft Flexible Robotic Manipulators in Minimally Invasive Surgery, supervised by Yohan Noh
- Intelligent, Interpretable and Adaptive Design of Steel Structures using Deep Learning and NLP, supervised by Michael Rustell and Tatiana Kalganova
- IoT techniques for disaster prediction and mitigation, supervised by Take Itagaki
- Large Language Modeling (LMM) for unstructured dialogues, supervised by Tatiana Kalganova
- Metasurfaces for smart environments, supervised by Nila Nilavalan
- Optimising end to end delay in 5G and Beyond networks, supervised by Nila Nilavalan
- Pattern Reconfigurable Antennas for future wireless communication systems, supervised by Nila Nilavalan
- Precision control of Nano-fuel production, supervised by Yang Yang
- Radio frequency Orbital Angular Moment (OAM) wave generation, supervised by Nila Nilavalan
- Smart Homes: Intelligent Data Collection and Processing using Lynsyn, supervised by Tatiana Kalganova
- Study of stray current induced corrosion in railway construction, supervised by Kangkang Tang
- Unlocking the hosting capacity of renewable energy in distribution power systems, supervised by Ahmed Zobaa
- Use of Large Language Models (LLM) as a Structural Engineering Design Assistant, supervised by Michael Rustell and Tatiana Kalganova
Research journey
This course can be studied undefined undefined, starting in undefined.
Find out about what progress might look like at each stage of study here: Research degree progress structure.
Research support
Careers and your future
You will receive tailored careers support during your PhD and for up to three years after you complete your research at Brunel. We encourage you to actively engage in career planning and managing your personal development right from the start of your research, even (or perhaps especially) if you don't yet have a career path in mind. Our careers provision includes online information and advice, one-to-one consultations and a range of events and workshops. The Professional Development Centre runs a varied programme of careers events throughout the academic year. These include industry insight sessions, recruitment fairs, employer pop-ups and skills workshops.
In addition, where available, you may be able to undertake some paid work as we recognise that teaching and learning support duties represent an important professional and career development opportunity.
UK entry requirements
The general University entrance requirement for registration for a research degree is normally a First or Upper Second Class Honours degree (1st or 2:1).
An interview will be required as part of the admissions process and will be conducted by at least two academic staff members remotely via MS Teams, Zoom, or face to face.
Applicants will be required to submit a personal statement and a research statement.
Please contact your proposed supervisor, where possible, to receive feedback and guidance on your research statement before submitting it. Learn how to prepare a research statement here.
EU and International entry requirements
English language requirements
- IELTS: 6.5 (min 6 in all areas)
- Pearson: 59 (59 in all subscores)
- BrunELT: 63% (min 58% in all areas)
- TOEFL: 90 (min 20 in all)
You can find out more about the qualifications we accept on our English Language Requirements page.
Should you wish to take a pre-sessional English course to improve your English prior to starting your degree course, you must sit the test at an approved SELT provider for the same reason. We offer our own BrunELT English test and have pre-sessional English language courses for students who do not meet requirements or who wish to improve their English. You can find out more information on English courses and test options through our Brunel Language Centre.
Please check our Admissions pages for more information on other factors we use to assess applicants. This information is for guidance only and each application is assessed on a case-by-case basis. Entry requirements are subject to review, and may change.
Fees and funding
2024/5 entry
International
£23,615 full-time
£11,805 part-time
UK
£4,786 full-time
£2,393 part-time
Fees quoted are per year and are subject to an annual increase.
Some courses incur additional course related costs. You can also check our on-campus accommodation costs for more information on living expenses.
Brunel offers a number of funding options to research students that help cover the cost of their tuition fees, contribute to living expenses or both. Recently the UK Government made available the Doctoral Student Loans of up to £25,000 for UK and EU students and there is some funding available through the Research Councils. Many of our international students benefit from funding provided by their governments or employers. Brunel alumni enjoy tuition fee discounts of 15%.