Skip to Content
Exit Menu
Dr Mahir Arzoky

Dr Mahir Arzoky
Lecturer in Computer Science

Summary

DR MAHIR ARZOKY is a Research Fellow in the College of Engineering, Design and Physical Sciences working on a research project titled Assessing The Quality Of Test Suites In Industrial Code (AQUATIC). Prior to this, he was a Research Associate in Machine Learning at the Cognitive Digital System Engineering Centre, Birmingham City University. Dr Arzoky obtained his PhD from the Department of Computer Science at Brunel University London in 2015. It was centred on applying Search Based Software Engineering and Intelligent Data Analysis techniques to a large real world software engineering dataset to model development trends and to predict changes. His research interest lies in the areas of Artificial Intelligence, Intelligent Data Analysis, Data Mining and Software Engineering, in specific Search Based Software Engineering.

Newest selected publications

Amer Jid Almahri, F., Bell, D. and Arzoky, M. (2019) 'Personas Design For Conversational Systems In Education'. Informatics, 6 (4). pp. 46 - 46. ISSN: 2227-9709 Open Access Link

Journal article

Shepperd, M., Guo, Y., Li, N., Arzoky, M., Capiluppi, A., Counsell, S., et al. (2019) 'The Prevalence of Errors in Machine Learning Experiments'.20th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL). Open Access Link

Conference paper

Kahaki, SMM., Nordin, MJ., Ahmad, NS., Arzoky, M. and Ismail, W. (2019) 'Deep convolutional neural network designed for age assessment based on orthopantomography data'. Neural Computing and Applications. pp. 1 - 12. ISSN: 0941-0643

Journal article

Counsell, S., Arzoky, M., Destefanis, G. and Taibi, D. (2019) 'On the Relationship Between Coupling and Refactoring: An EmpiricalViewpoint'.ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). Brazil. 2019. Porto de Galinhas, BR. 5 - 20 September. IEEE. ISSN: 1949-3770 Open Access Link

Conference paper

Yousefi, L., Swift, S., Arzoky, M., Sacchi, L., Chiovato, L. and Tucker, A. (2019) 'Opening the black box: Exploring temporal pattern of type 2 diabetes complications in patient clustering using association rules and hidden variable discovery'.2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS). Cordoba, Spain. 5 - 7 June. IEEE. pp. 198 - 203. ISSN: 2372-9198

Conference paper
More publications(16)