Skip to main content

High pressure die casting for lightweight metals

Lightweight materials have become increasingly critical for producing components for aircrafts, cars, trains, ships, and defence equipment. Especially, lightweight metal and alloys possess high strength-to-weight ratios and low density.
Common applications are met in the automotive, aerospace, manufacturing, railway and other large niche applications.
For example, lighter vehicles consume less fuel, emit less harmful gases and provide a better performance.
It should be noted that the aforementioned sectors (based on recent Eurostat data) are of crucial importance for the European Manufacturing Industry providing more than 6 million jobs and contributing ~11% to the EC-28 GDP.
As lightweight metals we consider aluminum, magnesium, and titanium alloys. Moreover, metal matrix composite materials that traditionally incorporate micron scale reinforcements in a bulk metallic matrix offer opportunities to tailor material properties such as hardness, tensile strength, thermal stability, ductility, density, thermal and electrical conductivity, and wear resistance.
With the advent of nanomaterials, nanocomposites are envisioned, and are being developed, with properties that overcome technical limitations of pure metals or composites that contain micron scale reinforcements. In the past decade, much work has been done towards developing polymer matrix nanocomposites and such materials are already used in various applications.

The LightMe Project is an €11M EU Horizon 2020 project that involves over 20 partners throughout Europe. The LightMe project aspires to be a point of reference for boosting innovation in the field of lightweight metal matrix nanocomposites (MMnC) setting up an Open Innovation Ecosystem (test bed) that will boost the introduction of new functionalities, features and capabilities to lightweight metals. The LightMe Ecosystem will provide the necessary infrastructure (6 Pilot Lines – PL) and knowhow for upscaling the new materials concepts related to lightweight MMnC and advance materials, in a cost effective and sustainable way.

The research at Brunel is responsible for the HPDC pilot line. The work includes (1) modification of the pilot line to produce industrial-scale castings; (2) optimisation of the casting process (3) evaluation of the mechanical properties of the final components.


Meet the Principal Investigator(s) for the project

Dr Brian McKay

Related Research Group(s)

metallurgical process of melting metals

Brunel Centre for Advanced Solidification Technology (BCAST) - BCAST is an academic research centre focusing on both fundamental and applied research on solidification of metallic materials.

polymers

Wolfson Centre for Sustainable Materials Development and Processing - Research into the development and processing of new materials including nano-materials, nano-phosphors and nanostructured carbon, biofuels, polymers and bio-polymers.


Partnering with confidence

Organisations interested in our research can partner with us with confidence backed by an external and independent benchmark: The Knowledge Exchange Framework. Read more.


Project last modified 18/03/2021