Exit Menu

Aerospace Engineering MSc

Enquire now Apply full-time Subject area: Aerospace Engineering
Study mode

1-year full-time

PG code


Start date


Study location

Brunel University London campus


Postgraduate Loans: From 1 August 2018 , students who live in England will be able to apply for a Postgraduate Loan in academic year 2018/19 of up to £10,609. Find out more

About the course

This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry.

Taught modules are balanced with practical and challenging individual and group aerospace project work. You will learn about aircraft design aerodynamics, space mechanics, spacecraft design, propulsion systems and the role of flight simulation in aerospace at an advanced level.

Practical projects typically include the design, build and testing of a scale aircraft, computational fluid dynamics and structural analysis modelling of a critical aerospace component and flight performance evaluation using a flight simulator.

MSc Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.


Although the course has a distinct specialist and technical flavour, the MSc also seeks to provide graduates with a raft of non-technical skills to enable them to realise their professional potential to its fullest.

To this end, the course provides modules that cover topics in strategic management, enterprise, research and innovation, as well as exploring issues that are of special importance to the future of the aerospace industry, such as safety, security, and sustainability.


Contact our Enquiries team.
Course Enquiries: +44 (0)1895 265599 (before you submit an application)
Admissions Office: +44 (0)1895 265265 (after you submit an application)

Course content

The MSc Aerospace Engineering course consists of five taught modules, a group project, and an individual project and dissertation.

Compulsory Modules

Design and Analysis of Aerospace Vehicles

  • Part A – Aerospace vehicles
    Introduction to spacecraft design: types, roles, systems, operating environment; Introduction to helicopter design: configurations, roles, design problems, operating environment, sizing and performance estimation; other aerospace vehicles: UAVs, MAVs, GEVs, spaceplanes, microlights, parachutes.
  • Part B – Aircraft design and systems analysis
    Fixed-wing aircraft conceptual design, parametric studies, preliminary design, detailed design. Airframe structure, aerodynamics, propulsion, use of materials, and mission requirements. Aircraft cost, aircraft reliability and maintainability predictions. Use of aircraft design data and design formulae. Application of specialist performance analysis software to the conceptual aircraft design process.

Advanced Aerodynamics, Propulsion Systems and Space Mechanics

Incompressible flow over airfoil and finite wings: Classical airfoil theory, vortex panel numerical method, Biot-Savart law, Helmholtz's theorem, Prantdl's classical lifting-line theory, lifting-surface theory, vortex lattice numerical method, the delta wing. Compressible flow: flow about bodies and shock formation, compressible flow relations, flow through nozzles, shock interactions and reflections, hypersonic flows.

Application of numerical codes: CFD, Euler solvers. Spacecraft trajectories. Multistage rockets. Escape velocity. Elliptical and circular orbits. Orbital manoeuvres. Atmospheric re-entry and atmospheric heating. Axial aircraft compressors. Radial equilibrium theory for axial machines. Axial aircraft turbines. Aircraft combustion chamber design. Ramjet.

Current Topics in Aerospace

Airport design, air traffic control and management; aircraft and airport security; safety measures in aircraft; environmental pollution and noise; history and statistics of air accidents; passenger and luggage handling; catering services; role of flight simulators; future for aerospace industry and air traffic growth.

Strategic Management, Innovation and Enterprise

  • Financial ownership issues: financial implications, sources of finance, raising capital, venture finance, merchant banks, mergers, take-overs, business restructuring.
  • Human resources management: key theories of motivation in workplace, leadership, incentivisation, managing a unionised workforce, employment legislation in UK, EU and worldwide. Organisation of a business: organisation theory, organisational strategy and culture, integration of functions, forces for change and continuous improvement.
  • Marketing concept: Customer orientation; market segmentation and analysis
  • Ethical business: Moral codes; legal frameworks; industry regulations; local and global trade. Marketing Communications: market research, marketing mix, branding, advertising and sponsorship.

Research Methods and Sustainable Engineering

  • Practical research issues: research processes and strategies; researcher/supervisor roles and relationships; writing, communicating and disseminating research; principles of good research practice.
  • Information retrieval: objectives; sampling methods; data analysis; when and how to apply statistics; statistical methods; preparing and sorting data; parametric and non-parametric tests; computer software for statistical analysis.
  • Risk management: Risk analysis and decision support, financial indicators
  • Innovation: Brainstorming, value engineering, intellectual property protection.

Group Project in Aerospace Engineering

Students work nominally in groups of five or six to prepare a novel design for a particular engineering system or product. They will be required to work from an initial design brief to produce the product design specification and the necessary planning and management strategies.

  • you will learn and apply techniques and skills to carry out the design of a multidisciplinary or cross-disciplinary system or product.
  • you will be required to produce a final technical specification including cost justification.
  • you will also be expected to provide performance justification, the specification of appropriate manufacturing techniques and provision for accommodating environmental effects.

Aircraft Structures, Loads and Aeroelasticity


Students will work independently on a project within given resources and time constraints. Students often choose project topics from a list provided by the module co-ordinator or after having discussions with academic members of staff.

  • Some projects may be part of the research activities undertaken by various research groups within the College.
  • Some project topics may be initiated by organisations external to Brunel, though supervision from within Brunel is necessary in all cases.
  • The nature of projects may be predominantly design, experimental, computing and/or analysis, or sometimes a critical literature survey. Many projects combine several of these aspects.

Read more about the structure of postgraduate degrees at Brunel and what you will learn on the course.


Aerospace engineering is currently one of the key areas where there is significant industry demand to recruit well qualified engineers. This demand exists especially in the UK, but also in other European countries. Brunel's MSc Aerospace Engineering course aims to prepare students with the knowledge and skills to fulfil this burgeoning industrial demand.

Careers and your future

Roles within the aerospace industry might include working in a broad range of areas including strategic management, enterprise, research and innovation, specifically research in safety, security, and sustainability which are of special importance to the future of the aerospace industry.

At Brunel we provide many opportunities and experiences within your degree programme and beyond – work-based learning, professional support services, volunteering, mentoring, sports, arts, clubs, societies, and much, much more – and we encourage you to make the most of them, so that you can make the most of yourself.

» More about Employability

Entry criteria 2019/20

  • A 2:2 (or above) UK  Honours degree, or equivalent internationally recognised qualification, in an engineering or technology subject. Other subjects in a related area, including but not limited to Physics ,and Mathematics, will be considered and assessed on an individual basis.

 Entry to this programme requires all students who are not nationals of the European Economic Area (EEA) and have temporary immigration permission to remain in the UK to obtain an ATAS certificate.  If you are made an offer to join this course and you are not an EEA national, you will be required to obtain an ATAS certificate as a condition of your offer.



Entry criteria are subject to review and change each academic year.

International and EU entry requirements

If your country or institution is not listed or if you are not sure whether your institution is eligible, please contact Admissions

This information is for guidance only by Brunel University London and by meeting the academic requirements does not guarantee entry for our courses as applications are assessed on case-by-case basis.

English language requirements

  • IELTS: 6 (min 5.5 in all areas)
  • Pearson: 51 (51 in all subscores)
  • BrunELT: 60% (min 55% in all areas)

You can find out more about the qualifications we accept on our English Language Requirements page.

If you require a Tier 4 visa to study in the UK, you must prove knowledge of the English language so that we can issue you a Certificate of Acceptance for Study (CAS). To do this, you will need an IELTS for UKVI or Trinity SELT test pass gained from a test centre approved by UK Visas and Immigration (UKVI) and on the Secure English Language Testing (SELT) list. This must have been taken and passed within two years from the date the CAS is made.

Should you wish to take a pre-sessional English course to improve your English prior to starting your degree course, you must sit the test at an approved SELT provider for the same reason.

We offer our own BrunELT English Test and have pre-sessional English language courses for students who do not meet requirements or who wish to improve their English. You can find out more information on English courses and test options at the Brunel Language Centre.

Assessment and feedback

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment.

For the final four months (June to September), students will conduct an individual project and prepare a dissertation, allowing the opportunity to undertake original research relating to the aerospace engineering field.

The group project is conducted throughout the year and is assessed by means of project logbooks, oral presentations and final project reports.

Special features

Highly rated

Brunel is ranked a top 20 engineering and technology university in the UK. (Times Higher Education World University Rankings 2018)

Postgraduate students can therefore expect to benefit from an experienced and supportive teaching base whilst having the opportunity to thrive in a dynamic and high-profile research environment.

Outstanding facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Strong links with industry

We regularly consult aerospace engineering experts to keep our programmes up to date with industry needs. Read more about how we integrated industrial expertise into an MEng Aerospace Engineering module.


Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.


Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Fees and funding

Fees for 2019/20 entry

UK/EU students: £9,100 full-time

International students: £18,720 full-time

Some courses incur additional course related costs. You can also check our on-campus accommodation costs for more information on living expenses.

Read about funding opportunities available to postgraduate students

UK/EU students can opt to pay in six equal monthly instalments: the first instalment is payable on enrolment and the remaining five by Direct Debit or credit/debit card.

Overseas students can opt to pay in two instalments: 60% on enrolment, and 40% in January for students who commence their course in September (or the remaining 40% in March for selected courses that start in January).